Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Find the derivative
- Integrate using basic integrals
- Verify if true (using algebra)
- Verify if true (using arithmetic)
- Integrate by partial fractions
- Product of Binomials with Common Term
- FOIL Method
- Integrate by substitution
- Integrate by parts
- Load more...
Apply the trigonometric identity: $\sec\left(\theta \right)^n\tan\left(\theta \right)^m$$=\frac{\sin\left(\theta \right)^m}{\cos\left(\theta \right)^{\left(n+m\right)}}$, where $m=2$ and $n=2$
Learn how to solve problems step by step online.
$1+\frac{\sin\left(x\right)^2}{\cos\left(x\right)^{2+2}}$
Learn how to solve problems step by step online. Simplify the trigonometric expression 1+tan(x)^2sec(x)^2. Apply the trigonometric identity: \sec\left(\theta \right)^n\tan\left(\theta \right)^m=\frac{\sin\left(\theta \right)^m}{\cos\left(\theta \right)^{\left(n+m\right)}}, where m=2 and n=2. Add the values 2 and 2. Combine all terms into a single fraction with \cos\left(x\right)^{4} as common denominator.