Find the derivative using logarithmic differentiation method $\frac{d}{dx}\left(\left(2x+1\right)^5\left(x^4-3\right)^6\right)$

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^{4}\left(x^4-3\right)^{5}$
Got another answer? Verify it here!

Step-by-step Solution

How should I solve this problem?

  • Find the derivative using logarithmic differentiation
  • Find the derivative using the definition
  • Find the derivative using the product rule
  • Find the derivative using the quotient rule
  • Find the derivative
  • Integrate by partial fractions
  • Product of Binomials with Common Term
  • FOIL Method
  • Integrate by substitution
  • Integrate by parts
  • Load more...
Can't find a method? Tell us so we can add it.
1

To derive the function $\left(2x+1\right)^5\left(x^4-3\right)^6$, use the method of logarithmic differentiation. First, assign the function to $y$, then take the natural logarithm of both sides of the equation

$y=\left(2x+1\right)^5\left(x^4-3\right)^6$
2

Apply natural logarithm to both sides of the equality

$\ln\left(y\right)=\ln\left(\left(2x+1\right)^5\left(x^4-3\right)^6\right)$

Apply logarithm properties to both sides of the equality

$\ln\left(y\right)=\ln\left(\left(2x+1\right)^5\left(x^4-3\right)^6\right)$

Applying the product rule for logarithms: $\log_b\left(MN\right)=\log_b\left(M\right)+\log_b\left(N\right)$

$\ln\left(y\right)=\ln\left(\left(2x+1\right)^5\right)+\ln\left(\left(x^4-3\right)^6\right)$

Using the power rule of logarithms: $\log_a(x^n)=n\cdot\log_a(x)$

$\ln\left(y\right)=5\ln\left(2x+1\right)+\ln\left(\left(x^4-3\right)^6\right)$

Using the power rule of logarithms: $\log_a(x^n)=n\cdot\log_a(x)$

$\ln\left(y\right)=5\ln\left(2x+1\right)+6\ln\left(x^4-3\right)$
3

Apply logarithm properties to both sides of the equality

$\ln\left(y\right)=5\ln\left(2x+1\right)+6\ln\left(x^4-3\right)$
4

Derive both sides of the equality with respect to $x$

$\frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(5\ln\left(2x+1\right)+6\ln\left(x^4-3\right)\right)$
5

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{1}{y}\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(5\ln\left(2x+1\right)+6\ln\left(x^4-3\right)\right)$
6

The derivative of the linear function is equal to $1$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(5\ln\left(2x+1\right)+6\ln\left(x^4-3\right)\right)$
7

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(5\ln\left(2x+1\right)\right)+\frac{d}{dx}\left(6\ln\left(x^4-3\right)\right)$

The derivative of a function multiplied by a constant ($6$) is equal to the constant times the derivative of the function

$\frac{y^{\prime}}{y}=5\frac{d}{dx}\left(\ln\left(2x+1\right)\right)+6\frac{d}{dx}\left(\ln\left(x^4-3\right)\right)$
8

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$\frac{y^{\prime}}{y}=5\frac{d}{dx}\left(\ln\left(2x+1\right)\right)+6\frac{d}{dx}\left(\ln\left(x^4-3\right)\right)$

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{y^{\prime}}{y}=5\left(\frac{1}{2x+1}\right)\frac{d}{dx}\left(2x+1\right)+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4-3\right)$
9

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{y^{\prime}}{y}=5\left(\frac{1}{2x+1}\right)\frac{d}{dx}\left(2x+1\right)+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4-3\right)$

The derivative of the constant function ($1$) is equal to zero

$\frac{y^{\prime}}{y}=5\left(\frac{1}{2x+1}\right)\frac{d}{dx}\left(2x\right)+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4-3\right)$
10

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{y^{\prime}}{y}=5\left(\frac{1}{2x+1}\right)\frac{d}{dx}\left(2x\right)+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4-3\right)$

The derivative of the constant function ($-3$) is equal to zero

$\frac{y^{\prime}}{y}=5\left(\frac{1}{2x+1}\right)\frac{d}{dx}\left(2x\right)+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$
11

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{y^{\prime}}{y}=5\left(\frac{1}{2x+1}\right)\frac{d}{dx}\left(2x\right)+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$10\left(\frac{1}{2x+1}\right)\frac{d}{dx}\left(x\right)$

The derivative of the linear function is equal to $1$

$10\left(\frac{1}{2x+1}\right)$
12

The derivative of the linear function times a constant, is equal to the constant

$\frac{y^{\prime}}{y}=10\left(\frac{1}{2x+1}\right)\frac{d}{dx}\left(x\right)+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$
13

The derivative of the linear function is equal to $1$

$\frac{y^{\prime}}{y}=10\left(\frac{1}{2x+1}\right)+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{10\cdot 1}{2x+1}+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{10}{2x+1}+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$
14

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{10}{2x+1}+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$24\left(\frac{1}{x^4-3}\right)x^{\left(4-1\right)}$

Subtract the values $4$ and $-1$

$24\left(\frac{1}{x^4-3}\right)x^{3}$
15

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{y^{\prime}}{y}=\frac{10}{2x+1}+6\cdot 4\left(\frac{1}{x^4-3}\right)x^{3}$
16

Multiply $6$ times $4$

$\frac{y^{\prime}}{y}=\frac{10}{2x+1}+24\left(\frac{1}{x^4-3}\right)x^{3}$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{10}{2x+1}+\frac{24\cdot 1x^{3}}{x^4-3}$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{10\cdot 1}{2x+1}+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{10}{2x+1}+6\left(\frac{1}{x^4-3}\right)\frac{d}{dx}\left(x^4\right)$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{10}{2x+1}+\frac{24x^{3}}{x^4-3}$
17

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{10}{2x+1}+\frac{24x^{3}}{x^4-3}$
18

Multiply both sides of the equation by $y$

$y^{\prime}=\left(\frac{10}{2x+1}+\frac{24x^{3}}{x^4-3}\right)y$
19

Substitute $y$ for the original function: $\left(2x+1\right)^5\left(x^4-3\right)^6$

$y^{\prime}=\left(\frac{10}{2x+1}+\frac{24x^{3}}{x^4-3}\right)\left(2x+1\right)^5\left(x^4-3\right)^6$
20

The derivative of the function results in

$\left(\frac{10}{2x+1}+\frac{24x^{3}}{x^4-3}\right)\left(2x+1\right)^5\left(x^4-3\right)^6$

The least common multiple (LCM) of a sum of algebraic fractions consists of the product of the common factors with the greatest exponent, and the uncommon factors

$L.C.M.=\left(2x+1\right)\left(x^4-3\right)$

Obtained the least common multiple (LCM), we place it as the denominator of each fraction, and in the numerator of each fraction we add the factors that we need to complete

$\frac{10\left(x^4-3\right)}{\left(2x+1\right)\left(x^4-3\right)}+\frac{24x^{3}\left(2x+1\right)}{\left(2x+1\right)\left(x^4-3\right)}$

Simplify the numerators

$\frac{10x^4-30}{\left(2x+1\right)\left(x^4-3\right)}+\frac{48x^{3}x+24x^{3}}{\left(2x+1\right)\left(x^4-3\right)}$

Combine and simplify all terms in the same fraction with common denominator $\left(2x+1\right)\left(x^4-3\right)$

$\frac{58x^{4}-30+24x^{3}}{\left(2x+1\right)\left(x^4-3\right)}\left(2x+1\right)^5\left(x^4-3\right)^6$

Multiplying the fraction by $\left(2x+1\right)^5\left(x^4-3\right)^6$

$\frac{\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^5\left(x^4-3\right)^6}{\left(2x+1\right)\left(x^4-3\right)}$

Simplify the fraction $\frac{\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^5\left(x^4-3\right)^6}{\left(2x+1\right)\left(x^4-3\right)}$ by $2x+1$

$\frac{\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^{4}\left(x^4-3\right)^6}{x^4-3}$

Simplify the fraction $\frac{\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^{4}\left(x^4-3\right)^6}{x^4-3}$ by $x^4-3$

$\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^{4}\left(x^4-3\right)^{5}$
21

Simplify the derivative

$\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^{4}\left(x^4-3\right)^{5}$

Final answer to the problem

$\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^{4}\left(x^4-3\right)^{5}$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $\left(58x^{4}-30+24x^{3}\right)\left(2x+1\right)^{4}\left(x^4-3\right)^{5}$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download solutions in PDF format and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account