$\lim_{x\to0}\left(\frac{\ln\left(1+x\right)^{\left(1+x\right)}}{x^2}-\frac{1}{x}\right)$
$2x+y;\:x=7;\:y=10g$
$3\left(-6x+12\right)-8$
$\frac{11u^4}{17u^7u^9}$
$\int\left(y^3+y\right)dy$
$14u-11u+u-4u+4u=20$
$\frac{\sin\left(x\right)^2+1+2\cos\left(x\right)+\cos\left(x\right)^2}{\left(1+\cos\left(x\right)\right)\sin\left(x\right)}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!