$\frac{8a^2+26a+15}{2a+3}$
$\left(\frac{1}{4}\:+\frac{x}{3}\right)\left(\frac{1}{4}\:-\:\frac{x}{3}\right)$
$\frac{1-\cos\left(t\right)}{\tan^2\left(t\right)}=\frac{\cos\left(t\right)}{\sec\left(t\right)+1}$
$\int_{-e^2}^{e^2}\left(\ln\left(x^2\right)\right)dx$
$-27.30-23.5+12.3$
$\frac{1}{7}+\frac{1}{12}=1$
$-x^2+13x+12$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!