Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Write in simplest form
- Prime Factor Decomposition
- Solve by quadratic formula (general formula)
- Find the derivative using the definition
- Simplify
- Find the integral
- Find the derivative
- Factor
- Factor by completing the square
- Load more...
Simplify $\left(\sqrt{\sqrt{\sqrt{\sqrt{2}}}}\right)^{48}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $\frac{1}{2}$ and $n$ equals $48$
Learn how to solve problems step by step online.
$\left(\sqrt{\sqrt{\sqrt{2}}}\right)^{24}$
Learn how to solve problems step by step online. Simplify the expression with radicals 2^(1/2)^(1/2)^(1/2)^(1/2)^48. Simplify \left(\sqrt{\sqrt{\sqrt{\sqrt{2}}}}\right)^{48} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals \frac{1}{2} and n equals 48. Simplify \left(\sqrt{\sqrt{\sqrt{2}}}\right)^{24} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals \frac{1}{2} and n equals 24. Simplify \left(\sqrt{\sqrt{2}}\right)^{12} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals \frac{1}{2} and n equals 12. Simplify \left(\sqrt{2}\right)^{6} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals \frac{1}{2} and n equals 6.