Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Rewrite the fraction $\frac{x-7}{\left(x+3\right)\left(x-4\right)}$ in $2$ simpler fractions using partial fraction decomposition
Learn how to solve integrals of exponential functions problems step by step online.
$\frac{10}{7\left(x+3\right)}+\frac{-3}{7\left(x-4\right)}$
Learn how to solve integrals of exponential functions problems step by step online. Find the integral int((x-7)/((x+3)(x-4)))dx. Rewrite the fraction \frac{x-7}{\left(x+3\right)\left(x-4\right)} in 2 simpler fractions using partial fraction decomposition. Expand the integral \int\left(\frac{10}{7\left(x+3\right)}+\frac{-3}{7\left(x-4\right)}\right)dx into 2 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{10}{7\left(x+3\right)}dx results in: \frac{10}{7}\ln\left(x+3\right). The integral \int\frac{-3}{7\left(x-4\right)}dx results in: -\frac{3}{7}\ln\left(x-4\right).