Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Rewrite the integrand $\left(x^2-2x+3\right)\left(\cos\left(3x\right)+\sin\left(3x\right)\right)$ in expanded form
Learn how to solve tabular integration problems step by step online.
$\int\left(x^2\cos\left(3x\right)+x^2\sin\left(3x\right)-2x\cos\left(3x\right)-2x\sin\left(3x\right)+3\cos\left(3x\right)+3\sin\left(3x\right)\right)dx$
Learn how to solve tabular integration problems step by step online. Find the integral int((x^2-2x+3)(cos(3x)+sin(3x)))dx. Rewrite the integrand \left(x^2-2x+3\right)\left(\cos\left(3x\right)+\sin\left(3x\right)\right) in expanded form. Expand the integral \int\left(x^2\cos\left(3x\right)+x^2\sin\left(3x\right)-2x\cos\left(3x\right)-2x\sin\left(3x\right)+3\cos\left(3x\right)+3\sin\left(3x\right)\right)dx into 6 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int x^2\cos\left(3x\right)dx results in: \frac{1}{3}x^2\sin\left(3x\right)+\frac{2}{9}x\cos\left(3x\right)-\frac{2}{27}\sin\left(3x\right). The integral \int x^2\sin\left(3x\right)dx results in: -\frac{1}{3}x^2\cos\left(3x\right)+\frac{2}{9}x\sin\left(3x\right)+\frac{2}{27}\cos\left(3x\right).