Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Find the derivative
- Integrate using basic integrals
- Verify if true (using algebra)
- Verify if true (using arithmetic)
- Integrate by partial fractions
- Product of Binomials with Common Term
- FOIL Method
- Integrate by substitution
- Integrate by parts
- Load more...
Apply the trigonometric identity: $\sin\left(x\right)\cos\left(y\right)$$=\frac{\sin\left(x+y\right)+\sin\left(x-y\right)}{2}$
Learn how to solve problems step by step online.
$\frac{\sin\left(3a-b\right)+\sin\left(-a-b\right)}{2}+\frac{-\left(\sin\left(a+b\right)+\sin\left(2a-\left(b-a\right)\right)\right)}{2}$
Learn how to solve problems step by step online. Simplify the trigonometric expression cos(2a)sin(a-b)-cos(b-a)sin(2a). Apply the trigonometric identity: \sin\left(x\right)\cos\left(y\right)=\frac{\sin\left(x+y\right)+\sin\left(x-y\right)}{2}. Combine fractions with common denominator 2. Simplify the product -(\sin\left(a+b\right)+\sin\left(2a-\left(b-a\right)\right)). Simplify the product -(b-a).