Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Multiply the fraction and term in $-3\frac{1}{3}x^3\sin\left(3x\right)$
Learn how to solve tabular integration problems step by step online.
$\frac{1}{3}x^3\cos\left(3x\right)-\int-x^3\sin\left(3x\right)dx$
Learn how to solve tabular integration problems step by step online. Find the integral cos(3x)1/3x^3-int(1/3x^3*-3sin(3x))dx. Multiply the fraction and term in -3\frac{1}{3}x^3\sin\left(3x\right). The integral -\int-x^3\sin\left(3x\right)dx results in: -\frac{1}{3}x^3\cos\left(3x\right)+\frac{1}{3}x^{2}\sin\left(3x\right)+\frac{2}{9}x\cos\left(3x\right)-\frac{2}{27}\sin\left(3x\right). Gather the results of all integrals. Combining like terms \frac{1}{3}x^3\cos\left(3x\right) and \left(-\frac{1}{3}\right)x^3\cos\left(3x\right).