Sign up to see the steps for this solution and much more.
Try other ways to solve this exercise
dydx=ae(3x)\frac{dy}{dx}=ae^{\left(3x\right)}dxdy=ae(3x)
limx→−∞3x3x+xex\lim_{x\to-\infty}\frac{3x}{3x+xe^x}x→−∞lim3x+xex3x
(x+7)2 −(x−7)2\left(x+7\right)^2\:-\left(x-7\right)^2(x+7)2−(x−7)2
13 x + −1 = 1\frac{1}{3}\:x\:+\:-1\:=\:131x+−1=1
y′=−xy−2y'=\frac{-x}{y-2}y′=y−2−x
327−5483\sqrt{27}-5\sqrt{48}327−548
∫1x2(x2−2)12dx\int\frac{1}{x^2\left(x^2-2\right)^{\frac{1}{2}}}dx∫x2(x2−2)211dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!