$\lim_{x\to\infty}\left(-\frac{9x^2-x+1}{x^2-x}\right)$
$\int_0^{2\pi}\left(1+\cos\left(x\right)\right)^3dx$
$a+9=\frac{18}{a}+2$
$a\cdot ax^4$
$\frac{3}{\:4}x+\frac{2}{5}\left(x-2\right)+2\le\:\frac{20}{3}-\frac{5}{2}\left(x-1\right)$
$\int\frac{3x+5}{2x^2+7x+6}dx$
$\int\frac{1}{\left(x-3\right)x\left(x+2\right)}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!