$\frac{x+2}{x+3}=\frac{5}{x-1}$
$\lim_{x\to\infty}\left(x+\sqrt{x^2+2x}\right)$
$\frac{d^5}{dx^5}\left(5e^{5x}\right)$
$\left(x+7y\right)^2=x^2+14xy+14y^2$
$\frac{dy}{dx}\left(x^2-5x+2\right)$
$\lim_{x\to1}\frac{9\sin\left(\pi x\right)}{\ln\left(x^5\right)}$
$500\cdot\infty\cdot527\cdot112$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!