Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Differential
- Find the derivative
- Find the integral
- Find the derivative using the definition
- Solve by quadratic formula (general formula)
- Simplify
- Find the integral
- Find the derivative
- Factor
- Load more...
Simplify $x^{11}\cos\left(x\right)\sin\left(x\right)\ln\left(x\right)$ using the trigonometric identity: $\sin(2x)=2\sin(x)\cos(x)$
Learn how to solve logarithmic equations problems step by step online.
$y=\frac{x^{11}\frac{\sin\left(2x\right)}{2}\ln\left(x\right)}{e^x\sqrt{x+5}}$
Learn how to solve logarithmic equations problems step by step online. Solve the logarithmic equation y=(cos(x)x^11sin(x)ln(x))/(e^x(x+5)^(1/2)). Simplify x^{11}\cos\left(x\right)\sin\left(x\right)\ln\left(x\right) using the trigonometric identity: \sin(2x)=2\sin(x)\cos(x). Multiplying the fraction by x^{11}\ln\left(x\right). Divide fractions \frac{\frac{x^{11}\sin\left(2x\right)\ln\left(x\right)}{2}}{e^x\sqrt{x+5}} with Keep, Change, Flip: \frac{a}{b}\div c=\frac{a}{b}\div\frac{c}{1}=\frac{a}{b}\times\frac{1}{c}=\frac{a}{b\cdot c}.