$\lim_{x\to\infty}\left(\frac{9x^2+5x}{3x^3+6x+1}\right)$
$\int_0^{2\pi}\left(tcos\left(\frac{1}{2}t\right)\right)dt$
$x^2=-5x-6$
$5\cdot\frac{dy}{dx}=y^{2}-4$
$9-\left(2x\right)^2$
$\frac{x+2}{1}=\frac{3}{x-1}$
$3x^5+x^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!