$\frac{dy}{dx}=\ln\left(x^y\right)\ln\left(x\right)$
$\left(x+4y\right)\left(x^2-4xy+16y^2\right)$
$\lim_{x\to0}\left(x-2\right)\cdot e^x$
$\int\left(\frac{x}{2}+\sqrt{x}\right)^2dx$
$\lim_{x\to\infty\:}\left(\ln\left(3\right)\right)$
$1-\sec\left(x\right)+\tan\left(x\right)$
$\lim_{x\to\infty}\left(\frac{3x-4}{\sqrt{x^2+5}}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!