Exercise
$\int_{\frac{3}{4}\pi}^{\frac{5}{6}\pi}\frac{sen^2x-tan^2x}{1-sen^2x}dx$
Step-by-step Solution
Final answer to the exercise
$-\tan\left(\frac{\pi \cdot 3}{4}\right)+\tan\left(\frac{\pi \cdot 5}{6}\right)\cdot \frac{4}{3}\tan\left(\frac{\pi \cdot 5}{6}\right)+\frac{\pi \cdot -2}{24}+\tan\left(\frac{\pi \cdot 3}{4}\right)\cdot -\frac{1}{3}\tan\left(\frac{\pi \cdot 3}{4}\right)+\frac{\tan\left(\frac{\pi \cdot 3}{4}\right)\cdot \sec\left(\frac{\pi \cdot 3}{4}\right)^{2}}{3}+\frac{-\tan\left(\frac{\pi \cdot 5}{6}\right)\cdot \sec\left(\frac{\pi \cdot 5}{6}\right)^{2}}{3}$