Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Product of Binomials with Common Term
- FOIL Method
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Prove from LHS (left-hand side)
- Load more...
Simplify $\left(\left(d-5\right)^2\right)^a$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $a$
Learn how to solve quadratic equations problems step by step online.
$10\left(d-5\right)^{2a}-\left(c+3\right)^3-\left(b+6\right)^5c^2,\:a=4,\:b=-7,\:c=-1,\:d=6$
Learn how to solve quadratic equations problems step by step online. Find the numerical value of the expression 10(d-5)^2^a-(c+3)^3-(b+6)^5c^2;a=4b=-7c=-1d=6. Simplify \left(\left(d-5\right)^2\right)^a using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 2 and n equals a. Calculate the numerical value for 10\left(d-5\right)^{2a}-\left(c+3\right)^3-\left(b+6\right)^5c^2 when a=4, b=-7 and c=-1,\:d=6. Replace the unknowns with their corresponding values. Subtract the values 6 and -7. Multiply 2 times 4.