Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Rewrite the fraction $\frac{x^3-x^2-5x+3}{\left(x-3\right)\left(x-2\right)\left(x^2+1\right)}$ in $3$ simpler fractions using partial fraction decomposition
Learn how to solve equations problems step by step online.
$\frac{3}{5\left(x-3\right)}+\frac{3}{5\left(x-2\right)}+\frac{-\frac{1}{5}x+1}{x^2+1}$
Learn how to solve equations problems step by step online. Find the integral int((x^3-x^2-5x+3)/((x-3)(x-2)(x^2+1)))dx. Rewrite the fraction \frac{x^3-x^2-5x+3}{\left(x-3\right)\left(x-2\right)\left(x^2+1\right)} in 3 simpler fractions using partial fraction decomposition. Expand the integral \int\left(\frac{3}{5\left(x-3\right)}+\frac{3}{5\left(x-2\right)}+\frac{-\frac{1}{5}x+1}{x^2+1}\right)dx into 3 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{3}{5\left(x-3\right)}dx results in: \frac{3}{5}\ln\left(x-3\right). The integral \int\frac{3}{5\left(x-2\right)}dx results in: \frac{3}{5}\ln\left(x-2\right).